6,736 research outputs found

    Reciprocal transmittances and reflectances: An elementary proof

    Full text link
    We present an elementary proof concerning reciprocal transmittances and reflectances. The proof is direct, simple, and valid for the diverse objects that can be absorptive and induce diffraction and scattering, as long as the objects respond linearly and locally to electromagnetic waves. The proof enables students who understand the basics of classical electromagnetics to grasp the physical basis of reciprocal optical responses. In addition, we show an example to demonstrate reciprocal response numerically and experimentally.Comment: 6 pages, 5 figures. RevTEX4. Improved wording. Physics Educatio

    Parametric resonance at the critical temperature in high energy heavy ion collisions

    Get PDF
    Parametric resonance in soft modes at the critical temperature (TcT_{c}) in high energy heavy ion collisions is studied in the case when the temperature (TT) of the system is almost constant for a long time. By deviding the fields into three parts, zero mode (condensate), soft modes and hard modes and assuming that the hard modes are in thermal equilibrium, we derive the equation of motion for soft modes at T=TcT=T_{c}. Enhanced modes are extracted by comparing with the Mathieu equation for the condensate oscillating along the sigma axis at T=TcT=T_{c}. It is found that the soft mode of π\pi fields at about 174 MeV is enhanced.Comment: 8 pages, 1 figure Some statements and equations are modified to clarif

    Locomotive and reptation motion induced by internal force and friction

    Full text link
    We propose a simple mechanical model of locomotion induced by internal force and friction. We first construct a system of two elements as an analog of the bipedal motion. The internal force does not induce a directional motion by itself because of the action-reaction law, but a directional motion becomes possible by the control of the frictional force. The efficiency of these model systems is studied using an analogy to the heat engine. As a modified version of the two-elements model, we construct a model which exhibits a bipedal motion similar to kinesin's motion of molecular motor. Next, we propose a linear chain model and a ladder model as an extension of the original two-element model,. We find a transition from a straight to a snake-like motion in a ladder model by changing the strength of the internal force.Comment: 10 pages, 7 figur

    Parametric amplification with a friction in heavy ion collisions

    Get PDF
    We study the effects of the expansion of the system and the friction on the parametric amplification of mesonic fields in high energy heavy ion collisions within the linear σ\sigma model . The equation of motion which is similar to Mathieu equation is derived to describe the time development of classical fields in the last stage of a heavy ion collision after the freezeout time. The enhanced mode is extracted analytically by comparison with Mathieu equation and the equation of motion is solved numerically to examine whether soft modes will be enhanced or not. It is found that the strong peak appears around 267 MeV in the pion transverse momentum distribution in cases with weak friction and high maximum temperature. This enhancement can be extracted by taking the ratio between different modes in the pion transverse momentum distribution.Comment: 10 pages, 9 figures LaTeX: appendix adde

    Topology Change of Coalescing Black Holes on Eguchi-Hanson Space

    Get PDF
    We construct multi-black hole solutions in the five-dimensional Einstein-Maxwell theory with a positive cosmological constant on the Eguchi-Hanson space, which is an asymptotically locally Euclidean space. The solutions describe the physical process such that two black holes with the topology of S^3 coalesce into a single black hole with the topology of the lens space L(2;1)=S^3/Z_2. We discuss how the area of the single black hole after the coalescence depends on the topology of the horizon.Comment: 10 pages, Some comments are added. to be published as a letter in Classical and Quantum Gravit

    Two-photon nonlinearity in general cavity QED systems

    Full text link
    We have investigated the two-photon nonlinearity at general cavity QED systems, which covers both weak and strong coupling regimes and includes radiative loss from the atom. The one- and two-photon propagators are obtained in analytic forms. By surveying both coupling regimes, we have revealed the conditions on the photonic wavepacket for yielding large nonlinearity depending on the cavity Q-value. We have also discussed the effect of radiative loss on the nonlinearity.Comment: 8 pages, 5 figure

    How Do Nonlinear Voids Affect Light Propagation ?

    Full text link
    Propagation of light in a clumpy universe is examined. As an inhomogeneous matter distribution, we take a spherical void surrounded by a dust shell where the ``lost mass'' in the void is compensated by the shell. We study how the angular-diameter distance behaves when such a structure exists. The angular-diameter distance is calculated by integrating the Raychaudhuri equation including the shear. An explicit expression for the junction condition for the massive thin shell is calculated. We apply these results to a dust shell embedded in a Friedmann universe and determine how the distance-redshift relation is modified compared with that in the purely Friedmann universe. We also study the distribution of distances in a universe filled with voids. We show that the void-filled universe gives a larger distance than the FRW universe by ∼5\sim 5% at z∼1z \sim 1 if the size of the void is ∼5\sim 5% of the Horizon radius.Comment: To appear in Prog. Theor. Phys. 10

    Orbital effects in manganites

    Get PDF
    In this paper I give a short review of some properties of the colossal magnetoresistance manganites, connected with the orbital degrees of freedom. Ions Mn{3+}, present in most of these compounds, have double orbital degeneracy and are strong Jahn-Teller ions, causing structural distortions and orbital ordering. Mechanisms leading to such ordering are shortly discussed, and the role of orbital degrees of freedom in different parts of the phase diagram of manganites is described. Special attention is paid to the properties of low-doped systems (doping 0.1 - 0.25), to overdoped systems (x > 0.5), and to the possibility of a novel type of orbital ordering in optimally doped ferromagnetic metallic manganites.Comment: 28 pages, 7 figures, to be published in J. Mod. Phys.

    Orbital Structure and Magnetic Ordering in Layered Manganites: Universal Correlation and Its Mechanism

    Full text link
    Correlation between orbital structure and magnetic ordering in bilayered manganites is examined. A level separation between the 3d3z2−r23d_{3z^2-r^2} and 3dx2−y23d_{x^2-y^2} orbitals in a Mn ion is calculated in the ionic model for a large number of the compounds. It is found that the relative stability of the orbitals dominates the magnetic transition temperatures as well as the magnetic structures. A mechanism of the correlation between orbital and magnetism is investigated based on the theoretical model with the two ege_g orbitals under strong electron correlation.Comment: 4 pages, 4 figure

    Kaluza-Klein Multi-Black Holes in Five-Dimensional Einstein-Maxwell Theory

    Get PDF
    We construct the Kaluza-Klein multi-black hole solutions on the Gibbons-Hawking multi-instanton space in the five-dimensional Einstein-Maxwell theory. We study geometric properties of the multi-black hole solutions. In particular, unlike the Gibbons-Hawking multi-instanton solutions, each nut-charge is able to take a different value due to the existence of black hole on it. The spatial cross section of each horizon can be admitted to have the topology of a different lens space L(n;1)=S^3/Z_n addition to S^3.Comment: 8 pages, to be published in Classical and Quantum Gravit
    • …
    corecore